

M.Z.F. SRL **ACCIAI SPECIALI PER UTENSILI**

TEL: +39 0362825803 E-MAIL: MZF@MZF.IT WWW.MZF.IT

W. NR. 1.2379 **ACCIAIO RICOTTO HB 230**

ACCIAI PER UTENSILI LINEA E PER LAVORAZIONI A FREDDO

ACCIAIO LEGATO AL CR-V-MO FORNITO ALLO STATO RICOTTO CON UNA DUREZZA DI CIRCA HB 230 C.A. RAGGIUNGE CON LA TEMPRA HRC 54/57

COMPOSIZIONE CHIMICA ANALISI MEDIA %

С	1,55
Si	0,30
Mn	0,30
Cr	12,0
Мо	0,70
V	1,00

1.2379 acciaio per utensili ledeburitico al cromo legato al molibdeno-vanadio. E' presente in utensili che richiedono un'elevatissima resistenza all'usura unita a una buona tenacità.

Acciaio utilizzato per la tranciatura di grossi spessori e di materiali abrasivi, il suo impiego è raccomandato quando la tenacità diventa indispensabile. Se preventivamente predisposto, può essere sottoposto a rivestimenti tipo P.V.D. e alle varie nitrurazioni.

CORRISPONDENZE

W.Nr.	AISI	UNI	GOST	AFNOR	SIGLA DIN	
1.2379	D2	X155CrVMo12		X160CDV12	X 155 Cr V Mo 121 1	

APPLICAZIONI

- Tranciatura a freddo
- Stampaggio a freddo
- Utensili per la rullatura di filettature
- Utensili per la trafilatura
- Imbutitura ed estrusione
- Utensili pressatori per l'industria farmaceutica
- Cilindri di laminazione a freddo
- Strumenti su misura

1.2379 offre i seguenti vantaggi:

- Buona tenacità
- Ottima temprabilità
- · Ottima lucidabilità

Caratteristiche:

- Ottima resistenza alla compressione
- Alta durezza dopo tempra
- · Elevata resistenza all'usura

Le applicazioni su indicate sono tipiche applicazioni. Le Vostre specifiche applicazioni non potranno essere prese in considerazione senza una valutazione per la loro fattibilità.

PROCESSO DI TEMPRA

RICOTTURA DI ADDOLCIMENTO	850-880° C	4-6 ore. Raffreddamento in forno
RICOTTURA DI DISTENSIONE	650°-680° C	1-3 ore. Raffreddamento in forno
AUSTENITIZZAZIONE	1020° - 1090° C	olio/aria/bagno di sale
RINVENIMENTO	200° - 550° C max	2-3 per circa 2 ore

RICOTTURA DI ADDOLCIMENTO

Riscaldo a **850°-880°C** con permanenza di temperatura da 4-6 ore (da quando l'utensile ha raggiunto la temperatura a cuore).

Raffreddamento lento in forno, per poi ultimare con il raffreddamento in aria sino a temperatura ambiente.

RICOTTURA DI DISTENSIONE

Nel caso venga lasciato poco sovrametallo sulle superfici dello stampo, é necessario eseguire obbligatoriamente la ricottura di distensione in forni con atmosfera protettiva.

La ricottura di distensione è consigliabile eseguirla a **650°-680°C** in atmosfera protettiva, con permanenza di 1/3 ore.

Raffreddamento lento in forno, poi raffreddamento in aria.

La distensione serve ad eliminare le tensioni provocate dalle lavorazioni meccaniche per asportazione di truciolo o per Elettroerosione, allo scopo di evitare deformazioni indesiderate in fase di trattamento termico di tempra.

TEMPRA

Il trattamento di tempra va eseguito in forni atti ad evitare decarburazione e ossidazione delle superfici.

Preriscaldo

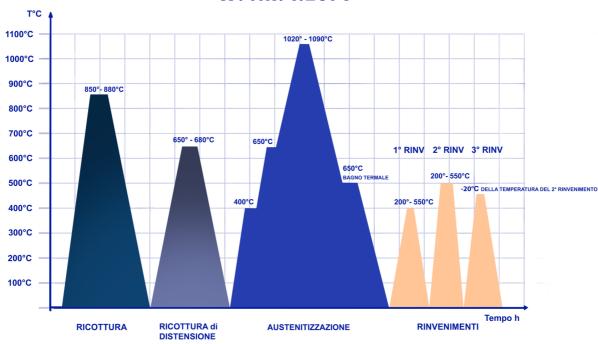
L'operazione di preriscaldo serve ad uniformare la temperatura tra la superficie e il cuore dello stampo durante la salita a temperatura di austenitizzazione.

Durante il preriscaldo si raccomanda di eseguire almeno tre soste; una a 400°C, una a 650°C.

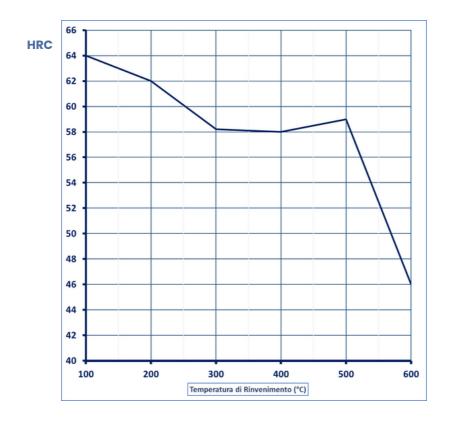
Proseguire con riscaldo alla temperatura di tempra 1020/1090°C con permanenza a regime.

Temperatura d'austenitizzazione 1.2379:

1020°C - 1090 °C. Normalmente: 1020°C


Rinvenimenti	Durezza dopo la tempra
200°C	62+ - 1HRC
300°C	58.5 + - 1HRC
400°C	58 + - 1HRC
500°C	59 + - 1HRC

L'alta temperatura di tempra è necessaria per realizzare durezze secondarie. Durezza consigliata: 56-62 HRc.


DIAGRAMMA CICLO TERMICO

W. NR. 1.2379

DIAGRAMMA DI RINVENIMENTO

Diagramma di rinvenimento 1.2379 in funzione della temperatura di austenizzazione

Mezzi di raffreddamento

Il raffreddamento dalla temperatura d'austenitizzazione. deve avvenire il più velocemente possibile fino a 650°C, in modo da evitare la precipitazione di carburi ai bordi dei grani austenitici.

Va posta particolare attenzione, per ridurre la differenza di temperatura tra superficie e cuore dello stampo durante il raffreddamento, in prossimità del punto di inizio trasformazione della martensite (M.S), per evitare inneschi a rottura derivanti da spigoli vivi e o forti differenze di sezione

- Raffreddamento in aria calma o soffiata
- Raffreddamento in forno fino a 300/350°C
- Raffreddamento in aria calma o soffiata
- Bagno di sale a 450/500°C, poi in aria
- Olio caldo (ca. 70°C) con forte agitazione

Rinvenire i pezzi temprati appena raggiunta la temperatura di 70°C al cuore dello stampo.

Distorsioni o rotture in fase di trattamento termico, sono normalmente dovute a:

- tensioni create dalle lavorazioni meccaniche subite dallo stampo e non completamente eliminate dalla ricottura di distensione non accuratamente effettuata (o non eseguita)
- tensioni termomeccaniche dovute a gradienti termici troppo elevati durante la fase di riscaldo o di raffreddamento

RINVENIMENTO

1.2379 Si raccomanda di eseguire prima del processo di nitrurazione almeno 2-3 rinvenimenti per ogni tipo di tempra:

Rinvenire a 200/550°C per 2 ore circa (secondo le esigenze di durezza, le dimensioni dei pezzi e le condizioni di esercizio), allo scopo di eliminare le tensioni residue indotte dalle lavorazioni meccaniche, che possono creare variazioni dimensionali e/o distorsioni sullo stampo finito.

Il raffreddamento deve eseguirsi poi in aria calma.

E' necessario ripetere i rinvenimenti almeno due volte per tempi prolungati, al fine di raggiungere la massima stabilità al limite inferiore di temperatura.

TRATTAMENTI TERMICI SUPERFICIALI

1.2379 è idoneo per essere sottoposto a trattamenti termici superficiali quali: **Nitrurazione**.

La nitrurazione è un trattamento termo-chimico di diffusione, che produce uno strato superficiale caratterizzato da ottima resistenza all'usura per abrasione e adesione, ed una buona resistenza alla corrosione.

Lo spessore dello strato nitrurato è funzione del tempo di nitrurazione.

Si raccomanda sopra tutto per stampi sottoposti a forti sbalzi di temperatura durante la produzione, di non utilizzare strati nitrurati profondi in quanto il coefficiente di dilatazione lineare risulta diverso da quello dell'acciaio.

Nitrurazione gassosaHV 1000-1100Nitrurazione morbidaHV 1050Nitrurazione ionicaHV>1150Nitrurazione al Plasma (A.P.R.)HV>1150

questo nuovo processo consente di controllare accuratamente la profondità degli strati nitrurati evitando l'infragilimento di sezioni sottili mantenendo inalterata la rugosità superficiale